2.2 高熔体强度聚丙烯[27]聚丙烯的缺点之一是熔体强度低,耐熔垂性差。通常非晶态聚合物(如ABS、PS)在较宽的温度范围内存在类似橡胶一样的弹性行为,而处于半结晶的聚丙烯则没有。这一缺点造成了聚丙烯不能在较宽的温度范围内进行热成型,它的软化点和熔点非常接近,一旦到达熔点,熔体粘度急剧下降,随之熔体强度也大幅下降,导致在热成型时制品壁厚不均,挤出发泡泡孔塌陷等问题,大大限制了聚丙烯在某些方面的应用。高熔体强度聚丙烯(HMSPP)就是指熔体强度对温度和熔体流动速率不太敏感的聚丙烯,极具开发应用前景。HMSPP是一种树脂含有长支链的聚丙烯,长支链是在后聚合中引发接枝的,这种均聚物的熔体强度是具有相似流动特性普通聚丙烯均聚物的9倍,在密度和熔体流动速率相近的情况下,HMSPP的屈服强度、弯曲模量以及热变形温度和熔点均高于普通聚丙烯,但缺口冲击强度比普通聚丙烯低。HMSPP与普通聚丙烯的力学性能如表38所示。表38 HMSPP与普通聚丙烯的力学性能比较项 目HMSPP普通PP测试方法密度/(g/cm3)0.910.90ASTMD505/792熔体流动速率/(g/10min)2.03.0ASTM D1238拉伸屈服强度/MPa 4037ASTM D638弯曲模量/MPa 22061700ASTM D680B缺口冲击强度(23℃)/(J/m) 2764ASTM D256热变形温度(0.455MPa)/℃ 135110ASTM D648熔点/℃ 168157DSC法HMSPP的另外一个特点是具有较高的结晶温度和较短的结晶时间,从而允许热成型制件可以在较高温度下脱模,以缩短成型周期,可以在普通热成型设备上制成较大拉伸比、薄壁的容器。HMSPP在恒定应变速率下,熔体流动的应力开始呈现逐渐增加,然后成指数级增加,表现出明显的应变硬化行为。发生应变时,普通聚丙烯的拉伸粘度随即下降,而HMSPP则保持稳定。HMSPP的应变硬化能力可以保证其在成型拉伸时,保持均匀变形,而普通PP在受到拉伸时总是从结构中最薄弱的或最热的地方开始变形,导致制品种种缺陷,甚至不能成型。 目前,HMSPP的制备方法主要有两种:一种是将聚丙烯与其他化合物进行反应性改性,另一类是聚丙烯与其他聚合物进行共混改性,具体的实施方法主要有射线辐射法、反应挤出法、聚合过程中引发接枝法等。在制备HMSPP的过程中,面临着两大难题:聚丙烯的降解和凝胶问题,同时存在着聚合物接枝与单体均聚的竞争、聚合物主链β断键和交联与支化的竞争。影响高聚物熔体强度的主要因素是其分子结构。就聚丙烯而言,相对分子质量及其分布和是否具有支链结构决定其熔体强度。一般相对分子质量越大,相对分子质量分布越宽,其熔体强度越大,长支链可明显提高接枝聚丙烯的熔体强度。HMSPP专用树脂解决了普通聚丙烯热成型困难的问题,可在普通热成型设备上成型较大拉伸比的薄壁容器,加工温度范围较宽,工艺容易掌握,容器壁厚均匀。可以用于制作微波食品容器和高温蒸煮杀菌容器。混有HMSPP的普通聚丙烯比纯普通聚丙烯具有较高的加工温度和加工速度,制成的薄膜透明性也好于普通聚丙烯。这主要是由于HMSPP具有拉伸应变硬化的特点,它的长支链具有细化晶核的作用。HMSPP的应变硬化行为是取得高拉伸比和涂覆速度快的关键因素。使用HMSPP可获得较高的涂覆速度和较薄的涂层厚度。HMSPP具有较高的熔体强度和拉伸粘度,其拉伸粘度随剪切应力和时间的增加而增加,应变硬化行为促使泡孔稳定增长,抑制了微孔壁的破坏,开辟了聚丙烯挤出发泡的可能性。高熔体强度聚丙烯的研究虽然起自20世纪80年代末,但它的各种优异性能、合理的价格优势以及广泛的应用范围已经获得世界范围的认同,并有逐步取代传统的PS、ABS,向工程塑料发展的趋势,其开发利用前景广阔。 我国HMSPP的研究现仍处于起始阶段,制备工艺一般均采用后加工过程中的交联或部分交联。如扬子石化公司研究院新近就使用动态硫化技术研制出了热成型用HMSPP。工艺过程采用有机过氧化物交联剂,与聚丙烯、聚乙烯组合物在混炼挤出过程中进行微交联,材料可用于热成型,加工各种制品,用于汽车、家电、家具和建筑等行业。 北京化工研究院2001年底首次通过辐照支化方法研制出了支化型HMSPP,除了熔体强度提高50%以上,其他性能也有所提高。以这种HMSPP为原料,通过热成型的方法可制备具有一定深度的制品,采用挤出和注射方法可制备发泡聚丙烯;另外在国内首次采用辐照交联的方法,在较低的吸收剂量下,研制出了高发泡率的辐照交联发泡聚丙烯,其发泡率可以达到20倍。HMSPP以及辐照交联发泡聚丙烯的研制填补了我国在这方面的空白。中国石油华北石化公司与燕山石化公司树脂应用研究所合作,对HMSPP的性能进行了研究测试,并把HMSPP用于发泡材料,取得了可喜的效果,不仅完成了低倍率化学片材的小试,制成低发泡片材,还对高发泡和珠粒制品做了初步研制。另外,天津轻工业学院、上海塑料研究所等也在此方面做了大量工作。北京化工大学采用敏化辐射法研制高熔体强度聚丙烯取得进展[27]。他们在普通PP中加入双官能度敏化剂SR213(美国Sartmer公司生产),经钴60γ射线辐射得到长链支化结构聚丙烯,不仅提高了熔体强度,而且拉伸强度、冲击强度都有较大提高。这种PP凝胶含量很少,可以满足成型加工的需要。2.3 聚丙烯微孔膜[28]聚丙烯的改性包括功能性的扩展。通过加工工艺方面的创新,可以制成分布着直径约0.5μm圆孔的微孔膜。其性能如下:(1)外观:光线照射到膜上时,由于微孔的存在会发生漫反射从而呈现白色不透明的外观。(2)性能,见表40。表40 微孔膜(25μm)的性能密度(g/cm3) 膜重(cm2/g) 空孔率(%) 孔径(最大)(μm) 拉伸强度纵/横(MPa) 断裂伸长率纵/横(%) 0.56 710 38 0.02×0.2 140/14 50/250以上 (3)临界表面张力为35dyne/cm。表面张力比之大的物质就不能通过,例如水为72dyne/cm就不能通过,但比之小的物质就能通过,例如乙醇(22.6)、丙酮23.3、苯(28.9)等。(4)可以阻隔细菌、胶体粒子。(5)具有优良的耐酸碱性。(6)本身呈疏水性,在进行表面活性处理后可转化呈亲水性。(7)可像一般PP膜一样进行热合、层压、涂覆等二次加工。微孔形成机理:结晶高聚物在拉伸聚向过程中会出现冷拉伸现象,这时其结构具有高度规整性,并且所有微晶都沿应力方向取向排列,称之为再结晶。对结晶制品在熔点下缓慢地进行热处理(退火),这时体积较小,不完整的微晶在较低温度下熔化,立即又重新结晶,从而调整链段排列使结晶结构趋于均匀化。在结晶—取向—再结晶的过程中,有效控制材料非晶区和晶区的取向分布,调整拉伸温度、拉伸强度、拉伸方法、热定型温度、冷却速率等工艺条件,就可得到微孔膜。微孔膜属高技术含量、高附加值产品,在电池领域可用做隔膜,在医疗领域因其无毒、阻隔细菌但可透气,可用于人工肺膜、杀菌包装物等。此种膜还可用于制造无菌水、无菌空气、废水过滤、烟尘分离、气体浓缩、卫生用品、花草、树苗栽培等等,用途十分广阔。3 结语聚丙烯是重要的通用塑料之一,无论是从绝对数量上,还是从应用的广度与深度上都属发展最快的品种。作为改性塑料行业,聚丙烯的高性价比、多功能化和工程化始终是摆在面前的重要任务。聚丙烯的改性可以在由小分子化合物聚合成大分子化合物时实现,如嵌段共聚(PPB)或无规共聚(PPR),但更多地是在聚合物已经形成之后,通过物理的、机械的、化学的方法,有针对性地进行改性。现已知晓并实际应用的技术与手段几乎都可以用于聚丙烯的改性,填充、增强、共混、交联、接枝、成核……。我们相信还会有更新、更好的改性方法出现。前面提到的一些改性技术和产品仅仅是大海中的几滴水,但可以给我们以足够的启示——任重道远 前景广阔,充分利用PP的优势,扬长避短,占领更多的应用领域,始终是我们今后面对的重要课题!作者:中国塑料加工工业协会改性塑料专业委员会 刘英俊 来源:塑料行业网
相关资讯
-
纸箱厂里,任何智能化、自动化的实现都要以纸箱产品的生产品质为前提,没有品质的高效率生产是不可取的,也不是纸箱厂转型升级的方向。所以,在使用智能化设备时,纸箱厂务必把握好产品品质。本文重点讲述如何通过智能化提高套色精度与网点清晰度、提升印刷品质。 气囊…
2025/4/15 7:49:33
-
无溶剂复合与溶剂型干式复合在技术原理的差异主要体现在胶膜和复合牢度形成机理、涂布方式、各工序的作用和要求等几个方面。无溶剂与干式复合工艺技术原理上的差异:
2025/4/14 7:19:34
-
实际生产中,经常会碰到这种情况:操作人员报告某项异常故障时,往往只是简单讲述异常的现象,而不能很精准地描述具体细节。例如缺墨,顾名思义,缺了一块墨或一片墨。但实际上,缺墨现象不一样,产生的原因是完全不一样的,解决方法自然也不一样。 本文用几张具体的异…
2025/4/13 7:58:16
-
当版材被生产出来之后,必须要经过严格的质量把控和检查才能投入使用。那么柔性版有哪些质量要求,生产出来之后又该如何存储呢?请跟随小编一起来了解下柔性版的6大质量要求以及存储条件把。 柔性版的6大质量要求 1、印版要有一定硬度 印版做完之后,一般要做一…
2025/4/12 7:10:18
共有 网友评论